ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. J. Onega, W. R. Becraft, C. A. Kukielka
Nuclear Science and Engineering | Volume 75 | Number 3 | September 1980 | Pages 243-257
Technical Paper | doi.org/10.13182/NSE80-A19056
Articles are hosted by Taylor and Francis Online.
Magnetic confinement fusion programs are now entering the design phase for devices that will demonstrate the physics and engineering necessary for fusion reactors. One design area of significance that is receiving increased consideration is that of determining the characterization and potential consequences of plasma disruptions. The thermal energy and the magnetic energy stored in an engineering test facility type plasma will each be ∼200 MJ. A thermal energy of 200 MJ will result in a very high heat flux if deposited on a tokamak wall in a short time. The consequences of such depositions as a function of disruption time, and of the spatial distribution of the plasma as it strikes the wall, are analyzed in this paper.