ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
R. J. Onega, W. R. Becraft, C. A. Kukielka
Nuclear Science and Engineering | Volume 75 | Number 3 | September 1980 | Pages 243-257
Technical Paper | doi.org/10.13182/NSE80-A19056
Articles are hosted by Taylor and Francis Online.
Magnetic confinement fusion programs are now entering the design phase for devices that will demonstrate the physics and engineering necessary for fusion reactors. One design area of significance that is receiving increased consideration is that of determining the characterization and potential consequences of plasma disruptions. The thermal energy and the magnetic energy stored in an engineering test facility type plasma will each be ∼200 MJ. A thermal energy of 200 MJ will result in a very high heat flux if deposited on a tokamak wall in a short time. The consequences of such depositions as a function of disruption time, and of the spatial distribution of the plasma as it strikes the wall, are analyzed in this paper.