ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
R. J. Onega, W. R. Becraft, C. A. Kukielka
Nuclear Science and Engineering | Volume 75 | Number 3 | September 1980 | Pages 243-257
Technical Paper | doi.org/10.13182/NSE80-A19056
Articles are hosted by Taylor and Francis Online.
Magnetic confinement fusion programs are now entering the design phase for devices that will demonstrate the physics and engineering necessary for fusion reactors. One design area of significance that is receiving increased consideration is that of determining the characterization and potential consequences of plasma disruptions. The thermal energy and the magnetic energy stored in an engineering test facility type plasma will each be ∼200 MJ. A thermal energy of 200 MJ will result in a very high heat flux if deposited on a tokamak wall in a short time. The consequences of such depositions as a function of disruption time, and of the spatial distribution of the plasma as it strikes the wall, are analyzed in this paper.