ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Dwight W. Underhill
Nuclear Science and Engineering | Volume 79 | Number 1 | September 1981 | Pages 19-25
Technical Paper | doi.org/10.13182/NSE81-A19039
Articles are hosted by Taylor and Francis Online.
Adsorption coefficients for krypton and xenon on a number of commercial charcoals, including charcoals from the U.S., Japan, and the USSR, have been correlated with the specific surface areas and bulk densities of these charcoals. It was found that adsorption coefficients are not a linear function of the specific surface area, but instead reach a maximum at specific surface areas of 350 and 490 m2/g for the adsorption of krypton and xenon, respectively. Adsorbents with these low specific surface areas also have the advantages of lower cost, greater hardness, and greater resistance to ignition in comparison with highly activated carbons. No conclusive relationship could be established between bulk density and the adsorption coefficient for either krypton or xenon.