ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Dwight W. Underhill
Nuclear Science and Engineering | Volume 79 | Number 1 | September 1981 | Pages 19-25
Technical Paper | doi.org/10.13182/NSE81-A19039
Articles are hosted by Taylor and Francis Online.
Adsorption coefficients for krypton and xenon on a number of commercial charcoals, including charcoals from the U.S., Japan, and the USSR, have been correlated with the specific surface areas and bulk densities of these charcoals. It was found that adsorption coefficients are not a linear function of the specific surface area, but instead reach a maximum at specific surface areas of 350 and 490 m2/g for the adsorption of krypton and xenon, respectively. Adsorbents with these low specific surface areas also have the advantages of lower cost, greater hardness, and greater resistance to ignition in comparison with highly activated carbons. No conclusive relationship could be established between bulk density and the adsorption coefficient for either krypton or xenon.