ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
John Greenstadt
Nuclear Science and Engineering | Volume 82 | Number 1 | September 1982 | Pages 78-95
Technical Paper | doi.org/10.13182/NSE82-A19030
Articles are hosted by Taylor and Francis Online.
The application of the cell discretization (CD) method to a class of nuclear reactor problems is described. The CD method is based on partitioning the domain in which the diffusion equations are to be solved into a set of subdomains, or “cells.” This approach, which resembles that used in the finite element method, nevertheless differs from it in certain important respects, some of which are mentioned in the course of describing CD. A FORTRAN program has been written that implements many of the features of the CD method, but is restricted to rectangular geometry. Several representative problems from the literature are solved numerically with CD, and the results are compared with the published ones. The central processor unit times are given for solution of these problems on the IBM 370/158 under VM, a time-sharing system. All results, including keff, peak-to-average-power ratios, integrated fluxes, etc. are listed in tables in such a way as to make comparison convenient. Flux plots are also shown for those cases where they were given in the literature.