ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Anujit Basu, Eric B. Bartlett
Nuclear Science and Engineering | Volume 116 | Number 4 | April 1994 | Pages 313-325
Technical Paper | doi.org/10.13182/NSE94-A18990
Articles are hosted by Taylor and Francis Online.
An artificial neural network (ANN)-based diagnostic adviser capable of identifying the operating status of a nuclear power plant is described. A dynamic node architecture scheme is used to optimize the architectures of the two backpropagation ANNs that embody the adviser. The first or root network is used to determine whether or not the plant is in a normal operating condition. If the plant is not in a normal condition, the second or classifier network is used to recognize the particular off-normal condition or transient taking place. These networks are developed using simulated plant behavior during both normal and abnormal conditions. The adviser is effective at diagnosing 27 distinct transients based on 43 scenarios simulated at various severities that contain up to 3% noise.