ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
D. Droste, H. M. Kottowski
Nuclear Science and Engineering | Volume 80 | Number 4 | April 1982 | Pages 673-688
Technical Paper | doi.org/10.13182/NSE82-A18977
Articles are hosted by Taylor and Francis Online.
The objective of this work is to study the coolability limits of stationary porous structures and loose particle accumulations that might occur in liquid-metal fast breeder reactor subassemblies. Due to the simple geometry of the test sections, it was possible to produce a motion picture and coordinate it with the mass flow and temperature measurements. This approach has been shown to provide an adequate picture of the cooling mechanisms, especially at sodium boiling. A remarkable difference in boiling behavior in stationary porous structures and movable particle accumulations has been observed. Stationary porous structures are very sensitive to non-rewetting hot spot formation and dryout, whereas particle accumulations tend to form fluidized bed structures at sodium boiling. Dryout heat flux correlations for both the stationary porous structure and the movable particle accumulation have been developed from the experimental results.