ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Francis Y. Tsang, Robert M. Brugger
Nuclear Science and Engineering | Volume 74 | Number 1 | April 1980 | Pages 34-39
Technical Paper | doi.org/10.13182/NSE80-A18944
Articles are hosted by Taylor and Francis Online.
A filtered neutron beam technique has been used to measure changes in an average total neutron cross section of tin. The cross section was averaged over a neutron energy band from 23.1 to 24.9 keV, which covers a number of resonances. This average cross section, when measured for a sample of intermediate thickness, shows the effect of Doppler broadening of the resonances. The effective average total cross section increases as the temperature of the sample increases with a change of slope at the gray-to-white tin transition and a step at the melting point. The changes of slope and steps are evidence of changes in the thermal motions of the tin atoms in the sample when the sample changes its physical state.