ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
H. W. Lefevre, J. C. Davis, J. D. Anderson
Nuclear Science and Engineering | Volume 70 | Number 1 | April 1979 | Pages 60-65
Technical Paper | doi.org/10.13182/NSE79-A18927
Articles are hosted by Taylor and Francis Online.
When collectively accelerated deuterons in pulsed electron beam machines interact with structural materials and insulators, they produce neutrons that can be used for diagnostic purposes. This paper describes a method for synthesizing neutron spectra that such devices might produce. It involves averaging experimental nuclear reaction data over angle and over energy to approximate the distributions in angle and in energy of deuterons as they impinge upon materials. Neutron time-of-flight (TOF) spectra were obtained using the Lawrence Livermore Laboratory tandem Van de Graaff accelerator and a 16-detector TOF spectrometer. Spectra were recorded at each of 16 angles for deuterons having energies of 2.5, 3.0, and 3.5 MeV on thick targets of carbon, aluminum, Teflon, CH2, and CD2. When summed over 4π sr at constant neutron energy to approximate (for example) the neutron spectrum from isotropic mono-energetic deuterons, the 19F(d,n) and 27Al(d,n) spectra still show well-resolved high-energy peaks at each bombarding energy. The synthesized TOF spectra that would be observed for such a case with pulse mode detectors and those that would be observed with current mode scintillation detectors are presented.