ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
S. K. Fraley, T. J. Hoffman
Nuclear Science and Engineering | Volume 70 | Number 1 | April 1979 | Pages 14-19
Technical Paper | doi.org/10.13182/NSE79-A18923
Articles are hosted by Taylor and Francis Online.
Two methods to improve the variance of statistical flux-at-a-point estimators over conventional unbounded estimators are developed that are readily implemented in multigroup Monte Carlo radiation transport computer codes. The theory behind the methods is developed, and the procedures for their application to Monte Carlo computer codes are outlined where necessary for clarity. Their application is demonstrated by the solution of a sample problem. These methods do not require a modification of the random walk, are easily implemented in multigroup Monte Carlo computer codes, and provide results that are comparable to other finite variance techniques.