ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. B. Yasinsky, L. R. Foulke
Nuclear Science and Engineering | Volume 44 | Number 1 | April 1971 | Pages 72-85
Technical Paper | doi.org/10.13182/NSE71-A18907
Articles are hosted by Taylor and Francis Online.
It is shown that the use of the standard spatial-differencing method when applied to space-time diffusion problems arising as the materials within a reactor are displaced can result in solutions which display a nonphysical time dependence. This irregular time dependence occurs when the spatial mesh and timestep are such that it takes several time steps for a movable material interface to move between two spatial meshpoints. New spatial difference equations, based on a specified piecewise polynomial flux behavior between meshpoints, are developed for the space-time group diffusion equations. Numerical studies show that these new difference equations eliminate the nonphysical time dependence of the solution for movable material problems. In addition, it is shown that for such problems the solutions resulting from the new difference equations are almost as accurate as solutions obtained using the standard difference equations with a much finer spatial mesh.