ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
J. B. Yasinsky, L. R. Foulke
Nuclear Science and Engineering | Volume 44 | Number 1 | April 1971 | Pages 72-85
Technical Paper | doi.org/10.13182/NSE71-A18907
Articles are hosted by Taylor and Francis Online.
It is shown that the use of the standard spatial-differencing method when applied to space-time diffusion problems arising as the materials within a reactor are displaced can result in solutions which display a nonphysical time dependence. This irregular time dependence occurs when the spatial mesh and timestep are such that it takes several time steps for a movable material interface to move between two spatial meshpoints. New spatial difference equations, based on a specified piecewise polynomial flux behavior between meshpoints, are developed for the space-time group diffusion equations. Numerical studies show that these new difference equations eliminate the nonphysical time dependence of the solution for movable material problems. In addition, it is shown that for such problems the solutions resulting from the new difference equations are almost as accurate as solutions obtained using the standard difference equations with a much finer spatial mesh.