ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
W. R. Rhyne, A. C. Lapsley
Nuclear Science and Engineering | Volume 40 | Number 1 | April 1970 | Pages 91-100
Technical Paper | doi.org/10.13182/NSE70-A18881
Articles are hosted by Taylor and Francis Online.
A numerical method for the solution of the time- and space-dependent multigroup diffusion equations is presented. The method permits a significant reduction in the computer time required to solve these equations by substantially increasing the allowable time step size. In the point reactor case, a form of the method considerably simplifies the calculation by removing the explicit dependence on the generation time and the delayed-neutron terms. The space-time equations are transformed into the Laplace domain and after multiplication by a weighting function they are transformed back into the time domain. By appropriate choice of the weighting function the equations appear either as coupled convolution integrals, where numerically difficult (e.g., generation time and delayed neutron) terms have been canceled, or as coupled integral equations in the weighted residual form, which permits very large time steps to be taken.