ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Louis M. Shotkin
Nuclear Science and Engineering | Volume 36 | Number 1 | April 1969 | Pages 97-104
Technical Paper | doi.org/10.13182/NSE69-A18860
Articles are hosted by Taylor and Francis Online.
Solutions obtained by expansion in a series of spatial modes and by an iterative method are compared for both space and space-time problems. In the space problem, the modal expansion is used to justify the iterative results. A useful nonlinear transformation is introduced to aid in solving multi-mode approximations. The space-dependent fast adiabatic excursion model, or Fuchs-Nordheim model, is solved by a novel iterative approach. This iterative solution is valid for large disturbances, as well as small, thus improving results obtained by approximate modal expansions. The derivation of the space-independent Fuchs-Nordheim model from the space-dependent equation is shown to follow in a more straightforward manner than derivations based on modal approximations.