ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
W. N. McElroy, S. Berg, T. B. Crockett, R. J. Tuttle
Nuclear Science and Engineering | Volume 36 | Number 1 | April 1969 | Pages 15-27
Technical Paper | doi.org/10.13182/NSE69-A18853
Articles are hosted by Taylor and Francis Online.
A multiple foil activation iterative method has been used to experimentally determine neutron flux spectra in various types of neutron environments. The method involves irradiation of a set of different foil detectors, measurement of resultant activities, and adjustment of a spectrum selected as an initial approximation to obtain a good-fit solution for a set of simultaneous activation integral equations. A computer code, SAND-II, is used to obtain this solution. Spectra from thermal and fast reactors and from beam sources have been measured. In each experiment, a set of more than ten foil detectors, encompassing low- and high-energy neutron-induced reactions, was irradiated and used as input to SAND-II. Solutions obtained are compared with diffusion, transport, or Monte Carlo calculations or with spectrometer measurements. It is concluded that the multiple foil activation iterative method is an important adjunct to calculational and neutron spectrometer techniques used to determine neutron flux spectra.