ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
J. E. Houghtaling, J. E. Grund
Nuclear Science and Engineering | Volume 36 | Number 3 | June 1969 | Pages 412-426
Technical Paper | doi.org/10.13182/NSE69-A18738
Articles are hosted by Taylor and Francis Online.
Reactor kinetics investigations have been performed for cold-start-up, hot-start-up, hot-standby, and operating-power reactivity accidents using the UO2-fueled, pressurized-water type SPERT-III reactor. Power excursion behavior was predicted for every SPERT-III experiment by digital computer calculations using the SPERT-developed PARET code. Extrapolations for severe cold-start-up excursion consequences were obtained from severe transient tests on SPERT-III fuel samples in the SPERT-IV capsule driver core. Analyses of the SPERT-III data show that prompt moderator heating was as significant as the Doppler effect in limiting the magnitude of power excursions in the SPERT-III core at operating temperatures. Comparisons of calculations and experimental data demonstrate that PARET is capable of predicting power excursion behavior in SPERT-III within experimental uncertainty for the range of conditions investigated. The SPERT-III integral-core tests also provide a broad base of experimental data for demonstrations of the capabilities of other existing models in predicting non-damaging power excursion behavior in UO2-fueled reactors.