ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Weston M. Stacey, Jr.
Nuclear Science and Engineering | Volume 36 | Number 3 | June 1969 | Pages 389-401
Technical Paper | doi.org/10.13182/NSE69-A18736
Articles are hosted by Taylor and Francis Online.
A stochastic kinetic theory for space- and energy-dependent, zero power, nuclear reactor models is constructed from a last collision probability argument. The space and energy domains are partitioned into discrete cells. Equations are developed for the probabilities for transitions among the possible states of the reactor, and an equation is obtained for the probability generating function for these transition probabilities. Equations for the mean values, variances, covariances and correlation functions of the neutron and precursor distributions are derived. The stochastic distributions of neutrons and precursors are found to be space- and energy-dependent in subcritical reactors, but to attain a space- and energy- independent asymptotic form in supercritical reactors. The asymptotic distribution in a supercritical reactor is identical for the neutron and precursor distributions, and depends upon the manner in which the reactor is made supercritical. A method for applying the theory to low-source start-up calculations is suggested. The influence of spatial stochastic effects upon such calculations is demonstrated.