ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
William G. Davey, Paul I. Amundson
Nuclear Science and Engineering | Volume 28 | Number 1 | April 1967 | Pages 111-123
Technical Paper | doi.org/10.13182/NSE67-A18673
Articles are hosted by Taylor and Francis Online.
The spherical shell method for investigating inelastic scattering cross sections has been used in a fast-reactor core environment. The changes in 238U/ 235U, 236U/ 235U, and 234U/ 235U fission ratios caused by placing shells of graphite, sodium, aluminum, iron, stainless steel, lead, and depleted uranium around the fission chambers were measured. Our studies show that reasonably accurate measurements can be made in a fast-reactor core. Where comparisons can be made, our results are in excellent agreement with the fission spectrum results of Bethe, Beyster, and Carter. Comparisons of our measured data with values calculated using two multigroup cross-section sets show clearly where these data sets are accurate and where they are in error.