ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
P. E. Reagan, R. L. Beatty, E. L. Long, Jr.
Nuclear Science and Engineering | Volume 28 | Number 1 | April 1967 | Pages 34-41
Technical Paper | doi.org/10.13182/NSE67-A18664
Articles are hosted by Taylor and Francis Online.
Fuel particles coated with pyrolytic carbon are contemplated for use in several high-temperature gas-cooled reactors. This paper describes the performance of pyrolytic carbon-coated, high-density, uranium oxide particles irradiated at 1300 to 1600°C. The fission-gas release, burnups, and temperatures for five experiments are given. Coated particles with a builtin gap between the fuel and the inner laminar coating began to show evidence of failure by releasing bursts of fission gas after 27.9% uranium burnup, and postirradiation examination revealed delamination of the inner coating. Coated particles made with a porous carbon buffer layer between the fuel and an isotropic coating showed no evidence of failure by fission-gas release, and showed no damage due to irradiation when examined by metallography. Coated particles with neither gap nor buffer, but with a low-density inner coating applied directly to the fuel, retained fission gas successfully but showed enlargement of cracks that had formed at the fuel-coating interface during the coating process. The oxide particles did not flow at high burnup and expand into voids and cracks as the carbide particles did, and the oxide did not diffuse into the carbon coating at high temperatures.