ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
M. L. Corradini
Nuclear Science and Engineering | Volume 86 | Number 4 | April 1984 | Pages 372-387
Technical Paper | doi.org/10.13182/NSE84-A18638
Articles are hosted by Taylor and Francis Online.
If a complete failure of normal and emergency coolant flows occurs in a light water reactor, fission product decay would eventually cause melting of the reactor fuel, leading to contact with water. An energetic fuel/coolant interaction (steam explosion) may result. Experiments were performed at Sandia National Laboratories in which ∼5 to 20 kg of molten fuel simulant were delivered into water in which the water mass was 1.5 to 50 times greater than the fuel. These experiments in subcooled and saturated water showed that spontaneous explosions occurred over the range of water/fuel mass ratio and that in certain experiments multiple explosions occurred. The kinetic energy conversion ratio was <2%. A model is proposed to describe the fuel/coolant mixing process. The model is compared to these intermediate-scale experiments. Additional data analysis indicates that the steam explosion is affected by the mixing process.