ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
C. Y. Fu
Nuclear Science and Engineering | Volume 86 | Number 4 | April 1984 | Pages 344-354
Technical Paper | doi.org/10.13182/NSE84-A18635
Articles are hosted by Taylor and Francis Online.
An advanced pairing correction for an existing formula of particle-hole state densities, needed in calculations of cross sections with the precompound nuclear reaction theory, is examined. The Pauli correction is derived to be consistent with this pairing correction. The accuracy of the pairing correction plus the Pauli correction is shown to be sufficient for applied calculations. Numerical solutions of the pairing equations, needed for generating the corrections, have been carried out. The relevant numerical results are presented as simple functions of the excitation energy and the exciton number. A relationship between the pairing correction for particle-hole state densities and the pairing correction for the total state densities in the closed-form formulation is developed. Utilization of the existing level-density parameters and data for deducing parameters for the particle-hole state densities are shown.