ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. P. Mengüç, R. Viskanta
Nuclear Science and Engineering | Volume 92 | Number 4 | April 1986 | Pages 570-583
Technical Paper | doi.org/10.13182/NSE86-A18613
Articles are hosted by Taylor and Francis Online.
Radiation transfer is relevant to a number of key technical issues related to nuclear reactor safety studies. To gain understanding of thermal radiation transfer under hypothetical reactor accident conditions, analysis of radiation transfer in a finite length cylindrical vessel containing high-temperature aerosols that absorb, emit, and scatter thermal radiation has been performed. The fine particles are assumed to be produced by the dispersion of the reactor core debris under high pressure. The model parameters used in the calculations correspond to those proposed in the High-Pressure Melt Streaming experimental program. Results of calculations show that the extinction coefficient and the single scattering albedo of the aerosol and the emissivity of the vessel are important model parameters. The sensitivity studies have identified the radiative property data base needed to make realistic radiative transfer calculations relevant to hypothetical reactor accidents in which fine aerosol particles are generated from the core debris.