ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Chaung Lin,Lawrence M. Grossman
Nuclear Science and Engineering | Volume 92 | Number 4 | April 1986 | Pages 531-544
Technical Paper | doi.org/10.13182/NSE86-A18610
Articles are hosted by Taylor and Francis Online.
A multilevel method is applied to the load-following control of a boiling water reactor using a nodal reactor model with practical operational constraints and thermal limits. Due to the very large size of the problem, a decomposition is made using hierarchical control techniques. The optimization of the resulting subproblems is performed using the feasible direction method. An objective functional, of quadratic form, is defined to reflect the control objective, namely, to achieve the desired thermal power (tracking) with minimum effort, returning to the initial xenon and iodine concentration as closely as possible. Nodal source equation and discretized Xe-I dynamic equations are formulated as equality constraints, while the linear heat generation rate and the rate of power increase are formulated as inequality constraints. Core flow and control rod position are the control variables. A simplified model of the core is used, with 4×4 fuel assemblies that have one control rod at the center.