ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D. W. Kneff, B. M. Oliver., Harry Farrar IV, L. R. Greenwood
Nuclear Science and Engineering | Volume 92 | Number 4 | April 1986 | Pages 491-524
Technical Paper | doi.org/10.13182/NSE86-A18608
Articles are hosted by Taylor and Francis Online.
The results of an extensive series of total helium production cross-section measurements for incident neutrons in the 14- to 15-MeV energy region are presented, and an experimental data base for the prediction of helium generation in candidate fusion reactor materials is provided. The measurements were made by isotope-dilution gas mass spectrometry. They include the pure elements Be, B, C, O, F, AI, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Ag, Sn, Ta, Pt, Au, and Pb; the separated isotopes of B, Fe, Ni, Cu, and Mo; and the alloy steels Type 316 stainless steel, HT-9, and 9 Cr-1 Mo. The results are in generally good agreement with other total helium production measurements in the literature, but comparisons with the ENDF/B- V nuclear data file indicate that the helium gas production files require revision for the structural elements vanadium, chromium, manganese, cobalt, and nickel. Comparisons with published cross sections for individual reaction channels indicate that reactions other than (n,α) contribute significantly to helium production in several materials.