ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
R. A. Brown, C. Blahnik, A. P. Muzumdar
Nuclear Science and Engineering | Volume 88 | Number 3 | November 1984 | Pages 425-435
Technical Paper | doi.org/10.13182/NSE84-A18596
Articles are hosted by Taylor and Francis Online.
Loss-of-coolant accident (LOCA) analysis for a Canada Deuterium Uranium (CANDU) reactor considers a wide range of postulated break sizes and locations in the heat transport piping. Coincident failure of the emergency coolant injection system to operate on demand must also be considered. The unique features of the CANDU core and heat transport system, and how these features affect the response of the system to a LOCA, are described. The possible range of behavior of the fuel and fuel channels following a LOCA is discussed in terms of the maximum fuel temperatures that could occur and also in terms of the potential for breaching the core pressure boundary (in the case of CANDU, this boundary comprises a large number of horizontal pressure tubes, each containing horizontal fuel bundles). It is concluded that fuel temperatures remain well below the UO2 melting temperatures and that the integrity of the pressure tubes is maintained for all postulated LOCAs.