ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
C. N. Amos, V. E. Schrock
Nuclear Science and Engineering | Volume 88 | Number 3 | November 1984 | Pages 261-274
Technical Paper | doi.org/10.13182/NSE84-A18581
Articles are hosted by Taylor and Francis Online.
The results of an experimental and theoretical investigation of the critical flashing flow of initially subcooled water through rectangular slits are described. The study of such flows is relevant to the prediction of leak rates through cracks in piping or pressure vessels. A simple model has been developed to predict critical mass flux for these flows, which are dominated by the effects of flashing delay (thermal nonequilibrium) and wall friction (due to the large length-to-diameter ratio typically involved). The model is in good agreement with the present data as well as the data of Jeandey et al.