ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Dirse W. Sallet
Nuclear Science and Engineering | Volume 88 | Number 3 | November 1984 | Pages 220-244
Technical Paper | doi.org/10.13182/NSE84-A18579
Articles are hosted by Taylor and Francis Online.
Thermal-hydraulic aspects of valves used in nuclear power plants are discussed. Emphasis is given to a review of recent work on safety and pressure relief valves, including the presentation of some experimental results describing one- and two-phase flow through such valves. Measurements of internal flow fields are presented. Significant flow separation occurs in both the safety and the pressure relief valves. An experimental study using high-speed photography to determine vaporization sites in safety valves when the flowing medium is initially a compressed liquid is described. A new method of estimating the observed decrease in valve coefficient when choked vapor flow changes to liquid flow is developed. This method also permits the prediction of the observed dependence of the valve coefficient on the receiver pressure in the choked and unchoked flow regimes. The fluid dynamic phenomena that lead to valve disk vibrations are discussed.