ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
S. Kaplan and J. B. Yasinsky
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 430-438
Technical Paper | doi.org/10.13182/NSE66-A18565
Articles are hosted by Taylor and Francis Online.
The physical question of the spatial stability of a reactor with respect to xenon oscillations corresponds to a mathematical question regarding the location in the complex plane of the roots of a certain eigenvalue problem. The introduction of feedback controllers corresponds to the imposition of constraints on the eigenvalue problem. The effect of certain such constraints on the locations of the eigenvalues is examined in this paper for the idealized case of a one-group uniform-ring reactor. It is found that the eigenvalues obey a rule related to Rayleigh's separation theorem for vibrating mechanical systems. A numerical example is given in which the solutions of the constrained eigenproblem are displayed, interpreted physically, and compared with those of the unconstrained problem.