ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. J. Rush, D. W. Connor, and R. S. Carter
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 383-389
Technical Paper | doi.org/10.13182/NSE66-A18558
Articles are hosted by Taylor and Francis Online.
The leakage flux from an 18 × 18 in. cylinder of D2O with a beam of pile neutrons incident at its center has been studied at D2O temperatures from 22° to 293°K. Intensities through beryllium and graphite filters, as well as indium foil transmissions, have been measured to determine cold-neutron fractions and neutron temperatures for the emerging spectra. The results of these measurements show that large volumes of D2O ice can be useful as low-temperature moderators in reactors. The percentage of leakage neutrons with λn ≥ 3.95 Å is 21% at 22°K, a 20-fold increase over the fraction at 293°K, and about twice the value at 100°K. The neutron temperature of the leakage spectrum, calculated from the transmission data assuming a Maxwellian distribution, decreases with moderator temperature, reaching a value of about 75° for D2O at 22°K. An abrupt increase in the fraction of cold neutrons is observed at the D2O freezing point, which appears to reflect a change in the transport rather than the moderating properties of the D2O, due to a decrease in the cross section for long-wavelength neutrons.