ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
E. E. Lewis
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 359-364
Technical Paper | doi.org/10.13182/NSE66-A18554
Articles are hosted by Taylor and Francis Online.
The Dirac chord method is applied to the calculation of the escape probability of heavy charged particles from a uniform isotropic source of arbitrary convex geometry. This leads to the distribution of path lengths traveled by particles before escaping from the source. The path-length distribution, which is a function only of the Dirac chord distribution, may be used to average nuclear characteristics over the source geometry. As an illustration, the standard formula for the neutron-escape probability is reproduced. Expressions are then derived for the spectrum and energy self absorption of heavy-charged-particle sources. Specific results for spherical, slab, and cylindrical sources are obtained with the assumption that the range is proportional to an arbitrary power of the particle energy.