ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
O. E. Dwyer
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 343-358
Technical Paper | doi.org/10.13182/NSE66-A18553
Articles are hosted by Taylor and Francis Online.
Circumferential variations of temperature and local heat transfer coefficients were obtained for sodium flowing in-line through a staggered rod bundle. The conditions of the study were: turbulent flow, uniform heat flux from the surfaces of all rods, and fully developed velocity and temperature profiles. The rods were spaced in an equilateral triangular array, and the pitch:diameter (P:D) ratio was varied down to 1.10. It was shown that the annulus model is satisfactory for estimating average heat transfer coefficients for P:D ratios down to about 1.3, but below this, it gives increasingly high results, e.g., at P:D = 1.10, an annulus-model coefficient can be high by about a factor of 2. It was found that circumferential temperature variations are not large, e.g., at P:D = 1.10, this variation is about twice the average temperature drop from the rod surface to flowing metal. Compared to the P:D ratio, the Peclet number has little influence on the reduction in the average heat transfer coefficient, or the circumferential variation of the surface temperature. At a P:D ratio of 1.40, the local coefficient is estimated to vary by a factor of only 1.2; at 1.20, by a factor of 1.7; and at 1.10, by a factor of ≈ 100.