ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Willy Smith and Frederick G. Hammitt
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 328-342
Technical Paper | doi.org/10.13182/NSE66-A18552
Articles are hosted by Taylor and Francis Online.
Applications to nuclear reactors have revived interest in natural convection. A rectangular closed cavity with internal heat generation and wall-cooling roughly simulating a channel of an internally-cooled homogeneous reactor core has been studied theoretically and experimentally. The basic equations of continuity, Navier-Stokes, and a modified energy relation including a volumetric heat source are normalized to show the dependence on the following nondimensional parameters: i) Nusselt number based on width; ii) Prandtl number, and iii) product of Rayleigh number based on width and aspect ratio, a/b, of the cavity. The complexity of these equations allows only numerical solutions, which are obtained following a modified Squire's method consisting in assuming temperature and velocity profiles. These are substituted into the nondimensional equations, and integrated across the cavity, resulting in a still complex system of differential equations in which the dependent variables and unknown functions are the thickness, velocity, and temperature of the rising core of fluid. The coefficients in the equations are functions of the core thickness, more or less complicated according to the velocity and temperature profiles assumed. Two cases are considered: a simplified temperature profile, as used by Lighthill; and a more sophisticated profile with a positive maximum. Both velocity profiles are Lighthill's. Digital computer calculations using a fourth-order Runge-Kutta method yielded solutions that follow the typical one-fourth power law: Nu = C(m, σ)[(a/b)Ra]1/4, where 1/2m is the slope of the wall temperature distribution, assumed linear. To include liquid metals, C was computed for 0.01 ≤ σ ≤ 10. The parallel experimental study confirms the existence of a positive maximum in the temperature profile, previously not reported. Introduction of this innovation in the theoretical treatment leads to excellent agreement with experimental results, and has the general effect of lowering the theoretical curves Nu = f[σ,(a/b)Ra]. Semiquantitative experimental data on the velocity field also indicate the existence of a positive maximum in the velocity profile until now not reported.