ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Coleridge A. Wilkins, Donald G. Thompson
Nuclear Science and Engineering | Volume 29 | Number 2 | August 1967 | Pages 244-247
Technical Paper | doi.org/10.13182/NSE67-A18533
Articles are hosted by Taylor and Francis Online.
The “infinitely dilute” resonance integral is considered in the unresolved region. The gamma-ray and fission widths are assumed constant so that the height of any resonance depends only on the resonance energy and the reduced neutron width. On the basis of this assumption, the γ'th moment of the area under the profile of an isolated resonance may be written as a combination of the integrals Any such integral may be expressed in terms of the integrals corresponding to j = 0 and j = 1, which are easily determined. Next, an expression for the γ'th moment of the resonance integral is derived for the case where resonances are scattered over an energy interval. In view of the lack of absolute unanimity among workers in this field, the derivation is performed without making any specific assumption about the level spacing distribution, allowance being made for energy dependence. From the results for an isolated resonance, this expression is capable of evaluation for any particular value of γ, once the form of the level spacing distribution has been chosen and the resonance density calculated.