ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
W.F. Sheely
Nuclear Science and Engineering | Volume 29 | Number 2 | August 1967 | Pages 165-175
Technical Paper | doi.org/10.13182/NSE67-A18524
Articles are hosted by Taylor and Francis Online.
Expressions are developed for the rate of production of atomic displacements in iron by neutron spectra found in reactors. Factors considered include anisotropic, elastic high-energy neutron scattering, inelastic high-energy neutron scattering, thermal-neutron capture-gamma recoil-induced displacements, and energy loss by electronic excitation. An evaluation of calculated atomic displacement density as a measure of radiation damage to steel was made by determining if this approach could rationalize the differences in damage rate produced by different reactor spectra. It was found that available data on radiation-induced property changes could be satisfactorily normalized to a common basis by expressing exposure as displacement density when all the above-mentioned factors are given consideration.