ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Toshikazu Shibata, Tadaharu Tamai, Masatoshi Hayashi, John C. Posey, James L. Snelgrove
Nuclear Science and Engineering | Volume 87 | Number 4 | August 1984 | Pages 405-417
Technical Paper | doi.org/10.13182/NSE84-A18507
Articles are hosted by Taylor and Francis Online.
Irradiated uranium-aluminide fuel plates of 40% 235U enrichment were heated for the determination of the amounts of fission products released at temperatures up to and higher than the melting point of the fuel cladding material. The release of fission products from the fuel plate at temperatures below 500°C was negligible. Three stages of fission product release were observed. The first rapid release was observed at ∼561°C along with blistering of the plates. The next release, which occurred at 585°C, might have been caused by melting of the Type 6061 aluminum alloy. The last release of fission product gases occurred at 650°C, which probably corresponds to the eutectic temperature of the uranium-aluminum alloy. The released material was mostly xenon, and small amounts of iodine and cesium were observed.