ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
G. Vendryes
Nuclear Science and Engineering | Volume 90 | Number 4 | August 1985 | Pages 427-430
Technical Paper | doi.org/10.13182/NSE85-A18490
Articles are hosted by Taylor and Francis Online.
The possibilities of breeding in liquid-metal fast breeder reactors (LMFBRs) and light water reactors (LWRs) are compared in two ways. The feasibility of breeding has been demonstrated in the Phénix reactor with a measured gain of 0.14. The gain in Superphénix will amount to ∼ 0.20. The studies show that while maintaining the performance of commercial reactors their breeding gain can be further increased either by the concept of heterogeneous cores or by using carbide or nitride fuel (breeding gain ∼ 0.35). Recently, the old idea of breeding in advanced pressurized water reactors (PWRs) has been taken up again with the objective of attaining a gain of 0.05. Unfortunately, these objectives had to be limited to a conversion ratio of 0.9 for safety reasons, and it is not certain whether operation will be rewarding economically. The strategy of substituting PWRs is examined using the French example. By gradually introducing LMFBRs, the cumulated uranium supplies in France can be kept within reasonable limits, which means that they attain three to jour times the home resources. This is not possible with advanced LWRs, which can be considered only as a possible backup solution for plutonium recycling into PWRs.