ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
M.A. Schultz, M. C. Edlund
Nuclear Science and Engineering | Volume 90 | Number 4 | August 1985 | Pages 391-399
Technical Paper | doi.org/10.13182/NSE85-A18487
Articles are hosted by Taylor and Francis Online.
A new ultra safe type of nuclear power plant is described that has a complete “walk-away-from” characteristic. That is, the reactor can safely dissipate its shutdown heat even if its power and water supplies are cut off. The reactor is steam cooled and is designed to operate at one fixed steam density. Its reactivity characteristics are such that if the power level increases, the steam becomes less dense than the optimum and tends to shut the reactor off. Similarly, if the reactor is flooded with water, the reactivity greatly decreases and also shuts the reactor down. The reactor can be operated as a burner, a high-efficiency converter, or a breeder, depending on the isotopic content of the fuel. The plant operates at low pressure and relatively high efficiency with an example given at 1000 psia and 35% efficiency. The reactor is enclosed in a conventional steel vessel resembling a boiling water reactor. The vessel is connected to a large atmospheric pressure pool of water, and shutdown consists of passively coupling the pool to the reactor through the loss of steam flow. Shutdown cooling is provided by forced air and natural draft convection cooling of the pressure vessel. Sufficient water and passive cooling are provided by the pool for many months of shutdown water cooling. The plant piping is double walled, and all paths of radiation escape, including pressure-vessel cracking, are channeled through an on-line cleanup system.