ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
F. Corvi, C. Bastian, K. Wisshak
Nuclear Science and Engineering | Volume 93 | Number 4 | August 1986 | Pages 348-356
Technical Paper | doi.org/10.13182/NSE86-A18470
Articles are hosted by Taylor and Francis Online.
The capture area in the 1.15-keV neutron resonance of 56Fe was measured with Moxon-Rae detectors with converters of bismuth, bismuth-graphite, and graphite. The data were normalized to gold capture at 4.91 eV using the saturated resonance method. Two separate measurements were performed: the first with the detector axis at 120 deg with respect to the neutron beam direction and the second with the axis at 90 deg. The average of the results over the three detectors is gsГnГγ/ Г = (64.9 ± 2.4) meV for the 120-deg run and gГnГγ/Г = (63.5 ± 2.1) meV for the 90-deg run. These values are 14 to 16% larger than the corresponding one from transmission data. No reason is found for such a discrepancy.