ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
S. J. Friesenhahn, E. Haddad, F. H. Fröhner, and W. M. Lopez
Nuclear Science and Engineering | Volume 26 | Number 4 | December 1966 | Pages 487-499
Technical Paper | doi.org/10.13182/NSE66-A18419
Articles are hosted by Taylor and Francis Online.
Neutron capture cross-section measurements from 0.01 to 10 eV on 182W, 183W, 184W, and 186W employing a totally absorbing gamma-ray detector are described. The 2200 m/sec values of the neutron capture cross section (in barns) obtained are: The shapes and magnitudes of the cross-section curves are compared to calculations using reported resonance parameters. Negative energy levels are postulated to account for the discrepancies between calculation and experiment for 182W and 184W. The 182W parameters are: E0 = −30.7 eV, Γγ= 57 meV, = 20 meV, g = 1, and for 194W: E0 = −110 eV, Γγ= 57 meV, = 48.4 meV, g = 1. The 183W and 186W measured cross sections are lower than those calculated from reported positive-energy resonance parameters. A measurement of the gold-capture cross section was used as a check on the experimental techniques employed. This work was supported in part by the National Aeronaustics and Space Administration, Space Nuclear Propulsion Office, under Contract SNPC-27.