ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
A. Natarajan, K. V. Subbaiah, D. V. Gopinath
Nuclear Science and Engineering | Volume 85 | Number 4 | December 1983 | Pages 418-422
Technical Note | doi.org/10.13182/NSE83-A18387
Articles are hosted by Taylor and Francis Online.
Significant differences have been observed between Goldstein and Wilkins (moments method) and ASFIT (anisotropic source flux iteration technique) buildup factors in the materials of high atomic number (Z) for 6- and 8-MeV gamma rays at depths greater than 10 mfp. Comparison has been made between the two, and quantitative differences are presented for tin, tungsten, lead, and uranium in the gamma-ray energy range of 3 to 10 MeV up to a depth of 20 mfp. It is believed that these large differences are a sequel to certain deficiencies in the Goldstein and Wilkins method of reconstructing the spatial distribution of the scattered flux in these cases. The closer agreement between the modified moments method values and the present results is cited.