ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
A. H. Kazi, C. R. Heimbach, R. C. Harrison
Nuclear Science and Engineering | Volume 85 | Number 4 | December 1983 | Pages 371-386
Technical Paper | doi.org/10.13182/NSE83-A18384
Articles are hosted by Taylor and Francis Online.
Neutron and gamma-ray tissue kerma and scalar spectrum measurements have been made at the Army Pulse Radiation Division (APRD), Aberdeen Proving Ground, to 1.6 km in air-over-ground geometry from a fission source and are compared to state-of-the-art transport calculations. Measurements have been made by the APRD staff as well as German, Canadian, and French scientists. A variety of integral detectors and differential spectrometers were used. Agreement among the various groups ranges from good to excellent. Calculations have been made in support of shielding programs and in connection with the Hiroshima-Nagasaki dose reevaluation effort. The DOT transport calculations have been performed at the Lawrence Livermore and Oak Ridge National Laboratories, the Defence Research Establishment, Ottawa, and at Science Applications, Inc. Monte Carlo calculations have been performed at Los Alamos National Laboratory. The calculations are generally consistent. Average calculated-to-measured kerma ratios range from 0.83 to 1.27. Calculated-to-measured neutron flux ratios vary from ∼0.6 near 1 keV and ∼0.8 near 5 MeV to ∼1.7 near 0.8 MeV. These spectral differences tend to cancel when determining tissue kerma, raising the possibility that some of the agreement in kerma may be fortuitous. Sources of possible discrepancies are discussed