ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. H. Kazi, C. R. Heimbach, R. C. Harrison
Nuclear Science and Engineering | Volume 85 | Number 4 | December 1983 | Pages 371-386
Technical Paper | doi.org/10.13182/NSE83-A18384
Articles are hosted by Taylor and Francis Online.
Neutron and gamma-ray tissue kerma and scalar spectrum measurements have been made at the Army Pulse Radiation Division (APRD), Aberdeen Proving Ground, to 1.6 km in air-over-ground geometry from a fission source and are compared to state-of-the-art transport calculations. Measurements have been made by the APRD staff as well as German, Canadian, and French scientists. A variety of integral detectors and differential spectrometers were used. Agreement among the various groups ranges from good to excellent. Calculations have been made in support of shielding programs and in connection with the Hiroshima-Nagasaki dose reevaluation effort. The DOT transport calculations have been performed at the Lawrence Livermore and Oak Ridge National Laboratories, the Defence Research Establishment, Ottawa, and at Science Applications, Inc. Monte Carlo calculations have been performed at Los Alamos National Laboratory. The calculations are generally consistent. Average calculated-to-measured kerma ratios range from 0.83 to 1.27. Calculated-to-measured neutron flux ratios vary from ∼0.6 near 1 keV and ∼0.8 near 5 MeV to ∼1.7 near 0.8 MeV. These spectral differences tend to cancel when determining tissue kerma, raising the possibility that some of the agreement in kerma may be fortuitous. Sources of possible discrepancies are discussed