ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Dubi, A. Goldfeld, K. Burn
Nuclear Science and Engineering | Volume 91 | Number 4 | December 1985 | Pages 470-480
Technical Note | doi.org/10.13182/NSE85-A18363
Articles are hosted by Taylor and Francis Online.
Recently a detailed theory analyzing the dependence of the second moment and calculational time upon geometrical splitting was developed based on the direct statistical approach (DSA). The extended model refers to the application of the DSA to the case in which splitting and Russian roulette are used depending on the direction in which the particle crosses the surface, but with the limitation that any source particle reaching the detector must have crossed the surface. The results of a first attempt to use the theoretical results for the optimization of the splitting parameter on one surface in a practical problem are reported. The feasibility of the method in predicting a near optimum splitting parameter is demonstrated, and the application of the method to multiple surface problems is discussed.