ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
A. Dubi, A. Goldfeld, K. Burn
Nuclear Science and Engineering | Volume 91 | Number 4 | December 1985 | Pages 470-480
Technical Note | doi.org/10.13182/NSE85-A18363
Articles are hosted by Taylor and Francis Online.
Recently a detailed theory analyzing the dependence of the second moment and calculational time upon geometrical splitting was developed based on the direct statistical approach (DSA). The extended model refers to the application of the DSA to the case in which splitting and Russian roulette are used depending on the direction in which the particle crosses the surface, but with the limitation that any source particle reaching the detector must have crossed the surface. The results of a first attempt to use the theoretical results for the optimization of the splitting parameter on one surface in a practical problem are reported. The feasibility of the method in predicting a near optimum splitting parameter is demonstrated, and the application of the method to multiple surface problems is discussed.