ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
V. G. Molinari, L. Pollachini
Nuclear Science and Engineering | Volume 91 | Number 4 | December 1985 | Pages 458-469
Technical Note | doi.org/10.13182/NSE85-A18362
Articles are hosted by Taylor and Francis Online.
A set of equations that describes the diffusion of thermal neutrons is obtained from the energy-dependent Boltzmann equation. These equations are analogous to the phenomenological laws of the thermodynamic theory of irreversible processes and show, for instance, that as a temperature gradient produces a neutron current (Soret effect), a density gradient yields an energy flow (Dufour effect). The method is applied to the “two-temperature problem” in order to gain better insight into the thermal diffusion phenomenon. The thermal diffusion of neutrons is shown to strongly depend on the scattering law of the two media where neutrons diffuse, and it is determined that some of the conclusions previously obtained are valid only for the case of a heavy gas moderator with the scattering cross section independent of the energy.