ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
C. A. Ciarcia, G. P. Couchell, J. J. Egan, G. H. R. Kegel, S. Q. Li, A. Mittler, D. J. Pullen, W. A. Schier, J. Q. Shao
Nuclear Science and Engineering | Volume 91 | Number 4 | December 1985 | Pages 428-443
Technical Paper | doi.org/10.13182/NSE85-A18359
Articles are hosted by Taylor and Francis Online.
Fast neutron inelastic scattering cross sections for levels between 700- and 1400-keV excitation energy in 232Th have been measured using the (n,n′) time-of-flight (TOF) technique. Measurements of 125-deg differential cross sections were made using neutrons with a typical energy spread of 8 to 10 keV, generated by the 7Li(p,n)7Be reaction. The incident neutron energies covered three regions: (a) 950 to 1550 keV in 50-keV intervals with the TOF spectrometer optimized to detect 200- to 600-keV scattered neutrons, (b) 1200 to 2000 keV in 100-keV intervals with the spectrometer optimized to detect 400- to 800-keV scattered neutrons, and (c) 1700 to 2100 keV in 100-keV steps with the spectrometer optimized for 800- to 1300-keV scattered neutrons. Throughout the experiment, an overall energy resolution of < 15 keV was maintained. Level cross sections were deduced from the 125-deg differential scattering cross sections and are compared with (n,n′λ) measurements and the ENDF/B-V evaluation. Angular distributions for states in the 700- to 900- keV region have been measured at 1.2, 1.5, and 2.0 MeV.