ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
F. Storrer, A. Khairallah, M. Cadilhac, P. Benoist
Nuclear Science and Engineering | Volume 24 | Number 2 | February 1966 | Pages 153-164
Technical Paper | doi.org/10.13182/NSE66-A18300
Articles are hosted by Taylor and Francis Online.
A perturbation method is described for the calculation of the heterogeneity effects on the multiplication factor and on the flux in fast reactors. It differs from the conventional perturbation method in that it uses an adjoint flux that is different from, but simply related to, the conventional adjoint. This new adjoint flux follows from the use of the collision-probability concept in the integral transport equation. The first-order changes in both the multiplication factor and the flux are simply expressed in terms of the conventional flux and adjoint flux obtained from homogeneous calculations. A procedure is described for the computation of higher-order changes. Qualitative results, as well as numerical results, are given. The application of the method to Doppler calculations in heterogeneous reactors is outlined.