ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. L. Cook, A. L. Wall
Nuclear Science and Engineering | Volume 31 | Number 2 | February 1968 | Pages 234-240
Technical Paper | doi.org/10.13182/NSE68-A18235
Articles are hosted by Taylor and Francis Online.
The thermal radiative capture cross sections of 87 nuclides were computed using a Monte Carlo selection of reduced neutron widths, and the assumption that distant resonance levels determine the cross section. Histograms of possible cross-section values were prepared for each nuclide, and the 87 samples analyzed to find the overall accuracy of estimation. The results indicated a fluctuation of 0.4 ± 0.6 for the logarithm of the ratio of experiment to the calculated mean cross section. Tables of results for means and standard deviations are given together with the results of Keane's summation formula. The possible use of this technique in estimating unknown cross sections is discussed.