ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
Walter A. Hackler, Chihiro Kikuchi
Nuclear Science and Engineering | Volume 31 | Number 2 | February 1968 | Pages 175-182
Technical Paper | doi.org/10.13182/NSE68-A18229
Articles are hosted by Taylor and Francis Online.
The effects of fast-neutron and electron-induced defects on the diffusion properties of lithium in silicon have been studied. Lithium-diffused diodes were irradiated and later drifted with reverse bias at a constant temperature. Results show that fast-neutron and 0.9-MeV electron induced vacancies provide sites for the precipitation of lithium. Moreover, the lithium vacancy precipitate behaves like a solute in equilibrium with ions and ionized vacancies. The analysis of the lithium vacancy precipitate in this manner is analogous to the analysis of slightly soluble salts in water. The lithium diffusion coefficient for silicon exposed to fast neutrons, NN = 1.1 to 2.7 × 1014 n/cm2, can be expressed The range of (T) in the above expression is from 300 to 410°K. In addition, the lithium diffusion coefficient for silicon exposed to 0.9-MeV electrons, NE = 5 × 1015 to 3.3 × 1016 electrons/cm2 can be represented by The range of (T) in the above expression is from 300 to 330°K. Relative radiation damage between neutron and electrons was found to be in reasonable agreement with predictions based on radiation damage theory.