ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
M. Caro, J. Ligou
Nuclear Science and Engineering | Volume 83 | Number 2 | February 1983 | Pages 242-252
Technical Paper | doi.org/10.13182/NSE83-A18217
Articles are hosted by Taylor and Francis Online.
Handling the highly anisotropic scattering of fast neutrons with conventional methods usually means that high-order Legendre expansions can be necessary to obtain correct angular fluxes. This drawback in standard transport calculations is avoided by applying the Boltzmann-Fokker-Planck (BFP) method, already used in transport of charged particles, to neutrons. Two methods are described to obtain the relevant input data for the one-dimensional BFP-1 code, one using basic differential scattering cross sections and the other using existing standard multigroup libraries. Numerical results for both methods are produced, revealing BFP as a powerful method when solving transport problems dealing with very fast neutrons. It is found that high accuracy, even for extreme cases of anisotropy, is achieved without increase of the computational effort.