ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
M. Mordant
Nuclear Science and Engineering | Volume 92 | Number 2 | February 1986 | Pages 218-227
Technical Paper | doi.org/10.13182/NSE86-A18169
Articles are hosted by Taylor and Francis Online.
A type of “phase-space discontinuous diamond” difference scheme, or “phase-space linear discontinuous finite element” approximation, is implemented to solve the two-dimensional [(x-y) or (r-z)] neutron transport equation. The results obtained on some well-known transport benchmark problems are much more accurate than discrete ordinates solutions attained with spatial diamond differencing or discontinuous finite element approximations. Error studies show convergence to the phase-space fine-mesh limit solution with an approximate and convergence rate, at least in the case of rectangular cells on phase-space domain D × V. In addition, phase-space fine-mesh limit results have been estimated with the help of extrapolation procedures for some neutron transport benchmark problems. This phase-space linear discontinuous finite element approach can be easily enlarged to more general spaces.