ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
A. B. Smith
Nuclear Science and Engineering | Volume 18 | Number 1 | January 1964 | Pages 126-129
Technical Paper | doi.org/10.13182/NSE64-A18149
Articles are hosted by Taylor and Francis Online.
The differential cross section for the elastic scattering of neutrons from U235 was measured at ∼ 50-keV intervals throughout the incident neutron energy range 0.3 to 1.5 MeV. Pulsed-beam time-of-flight techniques were employed to resolve the elastically scattered neutrons from those inelastically scattered and from the spectrum of fission neutrons. The experimental resolution extended from ∼ 25 to ∼ 65 keV at respective neutron energies of 0.3 and 1.5 MeV. All neutrons incurring an energy loss at the time of scattering, equal to or less than the respective resolution function, were considered “elastically” scattered. The experimental results were expressed in the form where σ(el) is the total elastic cross section, Pi are Legendre polynomials, and Wi are experimentally determined coefficients. The elastic transport cross section was derived from the measurements.