ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. A. Lewis and T. J. Connolly
Nuclear Science and Engineering | Volume 24 | Number 1 | January 1966 | Pages 18-25
Technical Paper | doi.org/10.13182/NSE66-A18120
Articles are hosted by Taylor and Francis Online.
The theory of Lane, Nordheim, and Sampson for the calculation of the effective resonance integral in media containing absorber in the form of small particles was tested by comparison with experiment. Measurements were made on samples containing gold particles in a range of volume fractions from 0.1 to 30%. Two diluent materials, lead and graphite, were used to test the effect of the type of material admixed with the absorber particles in the samples. Comparison of the theory and experiments was made on the basis of the calculated and measured decrease in effective resonance integral of the particle case relative to the corresponding homogeneous case with the same average absorber and diluent density. The results show that, for small absorber volume fractions, there is good agreement between theory and experiment, if the theory is suitably modified to describe the experiment. This agreement also extends to volume fractions above 10%, although the results of the theory are in question in this range.