ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
R. A. Lewis and T. J. Connolly
Nuclear Science and Engineering | Volume 24 | Number 1 | January 1966 | Pages 18-25
Technical Paper | doi.org/10.13182/NSE66-A18120
Articles are hosted by Taylor and Francis Online.
The theory of Lane, Nordheim, and Sampson for the calculation of the effective resonance integral in media containing absorber in the form of small particles was tested by comparison with experiment. Measurements were made on samples containing gold particles in a range of volume fractions from 0.1 to 30%. Two diluent materials, lead and graphite, were used to test the effect of the type of material admixed with the absorber particles in the samples. Comparison of the theory and experiments was made on the basis of the calculated and measured decrease in effective resonance integral of the particle case relative to the corresponding homogeneous case with the same average absorber and diluent density. The results show that, for small absorber volume fractions, there is good agreement between theory and experiment, if the theory is suitably modified to describe the experiment. This agreement also extends to volume fractions above 10%, although the results of the theory are in question in this range.