ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
E. E. Lewis, F. T. Adler
Nuclear Science and Engineering | Volume 31 | Number 1 | January 1968 | Pages 117-126
Technical Paper | doi.org/10.13182/NSE68-A18014
Articles are hosted by Taylor and Francis Online.
A method has been developed for calculating resonance effects in nuclear reactor lattices without the two widely used assumptions: 1) that the neutron flux is spatially independent within each region of the lattice cell; 2) that the flux recovers an asymptotic l/E form between resonances. The neutron slowing down problem is formulated in terms of a Boltzmann integral equation, and the correct transport kernel is derived for a Wigner-Seitz equivalent cell with isotropic scattering in the laboratory system. A new method of polynomial approximations is then used to reduce the transport problem to matrix form. The result is a set of integral equations in lethargy for the neutron flux at a number of discrete ordinates. These equations are numerically integrated to obtain the neutron flux as a function of position and energy. Resolved resonance integrals are calculated for a number of 238U-graphite lattices with both metal and oxide rods. Where comparisons are made, the results are in excellent agreement with accurate Monte Carlo calculations. Both the flat flux and flux recovery assumptions are found to cause significant overestimates of the resonance integrals, the errors increasing with the rod radii. The temperature coefficients, however, are less sensitive to these assumptions.