ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
M. L. Williams
Nuclear Science and Engineering | Volume 83 | Number 1 | January 1983 | Pages 37-49
Technical Paper | doi.org/10.13182/NSE83-2
Articles are hosted by Taylor and Francis Online.
The effect that interference between resolved resonances has on averaging multigroup cross sections is examined for thermal reactor-type problems. A simple and efficient numerical scheme is presented to correct a preprocessed multigroup library for interference effects. The procedure is implemented in a “design-oriented” lattice physics computer code and compared with rigorous numerical calculations. The approximate method for computing resonance interference correction factors is applied to obtaining fine group cross sections for a homogeneous uranium-plutonium mixture and a uranium oxide lattice. It was found that some fine group cross sections are changed by more than 40% due to resonance interference. The change in resonance interference correction factors due to burnup of a pressurized water reactor (PWR) fuel pin is examined and found to be small. The effect of resolved resonance interference on collapsed broad group cross sections for thermal reactor calculations is discussed. It is found that the 238U and 235U epithermal cross sections are fairly insensitive to interference effects, but the 239Pu value increases ∼3.5%, and the 240Pu value decreases by more than 7% for a PWR pin.