ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
M. L. Williams
Nuclear Science and Engineering | Volume 83 | Number 1 | January 1983 | Pages 37-49
Technical Paper | doi.org/10.13182/NSE83-2
Articles are hosted by Taylor and Francis Online.
The effect that interference between resolved resonances has on averaging multigroup cross sections is examined for thermal reactor-type problems. A simple and efficient numerical scheme is presented to correct a preprocessed multigroup library for interference effects. The procedure is implemented in a “design-oriented” lattice physics computer code and compared with rigorous numerical calculations. The approximate method for computing resonance interference correction factors is applied to obtaining fine group cross sections for a homogeneous uranium-plutonium mixture and a uranium oxide lattice. It was found that some fine group cross sections are changed by more than 40% due to resonance interference. The change in resonance interference correction factors due to burnup of a pressurized water reactor (PWR) fuel pin is examined and found to be small. The effect of resolved resonance interference on collapsed broad group cross sections for thermal reactor calculations is discussed. It is found that the 238U and 235U epithermal cross sections are fairly insensitive to interference effects, but the 239Pu value increases ∼3.5%, and the 240Pu value decreases by more than 7% for a PWR pin.